The VIPA Zone: Virtualize Your IP Addresses for Uptime

Jeff Carey
Gateway/400 Group
Thursday, September 13, 2012

jeff@jmcarey.com

Submitted for your approval

- Pronunciation
- What is VIPA?
- Benefits
 - Redundancy
 - Failover
 - Load Balancing
 - Joining networks
- Creating VIPA
- Advertising the VIPA
 - Proxy ARP
 - RIP2
What is VIPA?

- In most of the “IT World” a system has an IP address
- IBM i has multiple interfaces
- Virtual IP Address is a feature of IBM i, AIX, z/OS
- IP address not associated with a specific interface
Benefits

- Benefits
 - Redundancy
 - Failover
 - Load Balancing
 - Joining networks

Redundancy

- VIPA is not tied to a single interface
- Client targets VIPA which is in turn associated with one or more interfaces
- If one of the associated interfaces should fail, the VIPA still works using the remaining interface(s)
Failover

- In an HA/DR scenario, you might have a primary and a secondary server
- These could be in different locations and on different networks
- A VIPA can be configured to “move” between these servers
- Users only target one system
- Key to automatic failover with clustering

Failover

- Eliminates this situation:

PROD DR
Load Balancing

- **Inbound load balancing**
 - Requires router that is capable of route directives
 - A function of the router
- **Outbound**
 - Set up Schowler routes
 - Doesn’t require VIPA, but works with it
- **Details to follow**

Joining networks
Creating VIPA

- Note: this is IPv4. Some IPv6 functionality added in IBM i 6.1 (see InfoCenter)
- System i Navigator
Subnet mask

255.255.255.255 means only one host on this network – more later!
“Classic” Interface (green screen)

Add TCP/IP Interface (ADDTCPIFC)

MTU

VIPA doesn’t have an interface, so this does not matter as much. Best practice: make it the same as largest MTU of any interface VIPA could be using.

Associated local interface

Proxy ARP – specify physical interface (more later)
RIP2 – generally *NONE
Creating the VIPA

• For outbound connections, remote system sees the current physical interface as the source address
• To show them the VIPA, on each physical interface enter the VIPA in the “associated local interface” parameter
• http://www-912.ibm.com/s_dir/slkbase.NSF/0/0c34610c614c7f0f86256fcb006a5435?
 OpenDocument

Advertising the VIPA

• Could create a manual route to the VIPA on every router

OR

• Advertise the VIPA
 – Proxy ARP
 – RIP2

COMMON
Proxy ARP

- Every NIC has a unique MAC address
- Router keeps track of all MAC addresses and associated IP’s on it’s subnet
- VIPA’s have no MAC address because they have no permanent interface
- When looking for an IP, a machine looks in it’s ARP cache and if it doesn’t find it, it makes an ARP (Address Resolution Protocol) call

Proxy ARP

- Request hits router for the VIPA
- Router doesn’t know the MAC address, so it makes an ARP request
- Interface currently associated with VIPA answers with its MAC address

I’m Spartacus!
Proxy ARP

• Generally, VIPA for Proxy ARP is in the same address space as the subnet it’s on

Example:

• Subnet: 10.3.1.0/24 (mask 255.255.255.0)
• Host addresses: 10.3.1.1 – 10.3.1.254
• VIPA 10.3.1.11/32 (mask 255.255.255.255)

Cisco LAM

• Cisco’s Local Area Mobility function in IOS
• Supported starting in V5R4
• Allows migration of from one subnet to another

Details:

Preferred interfaces

- Starting V5R4, list of interfaces associated with VIPA
- If first fails, next one on list is used
- **Tips and Techniques for Using TCP/IP on i5/OS**

RIP2

- Allows moving of VIPA from one subnet to another and back
- Great for DR scenarios
- Enable RIP2 (Routing Information Protocol 2)
- Must be enabled on routers as well
• Prod system in New Jersey 10.2.4.10
• DR system in California 10.1.3.10
• Create VIPA 192.168.1.10 on both systems
• Active on Prod, inactive on DR
• If have clustering, switch handled automatically
 [Link](http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=/rzaig/rzaigapplicationswitchover2.htm)

• Proxy ARP box unchecked, no associated interfaces
• Advertise with Router Daemon (RouteD)
• WRKRTDCFG
• System i Navigator
 – Network -> Servers -> TCP/IP, right-click RouteD and select Properties
IBM i5/OS IP Networks: Dynamic

RIP_INTERFACE 10.1.3.10 31 SUPPLY RIP2 FORWARD_COND 192.168.1.10
NOFORWARD 0.0.0.0 MASK 0.0.0.0 BLOCK 0.0.0.0 MASK 0.0.0.0

- Translation: for physical interfaces 10.3.1.10 and 10.3.1.11 (10.1.3.10/31) answer requests for VIPA 192.168.1.10
- COND – only if at least one of these physical interfaces is active
- BLOCK and NOFORWARD prevent other networks from being advertised

Make sure network is setup for RIP2 and you won’t interfere with other RIP2

Start RouteD and set to start when TCP/IP starts
- System i Navigator
- CHGRTDA

Fault Tolerance Configuration for the IBM System i Server Using Virtual IP

http://www-912.ibm.com/s_dir/SlKBase.nsf/1ac66549a2140218862568060002037a/6F5c2d316d97c9286256b140048c77070openDocument
Load Balancing

• Inbound load balancing
 – Requires router that is capable of route directives
 – A function of the router

• Outbound
 – Set up Schowler routes
 – Doesn’t require VIPA, but works with it

• Details to follow

Example

• VIPA 192.168.1.10
• Physicals 10.1.3.10 and 10.1.3.11
• Route Directives:

<table>
<thead>
<tr>
<th>Destination</th>
<th>Subnet Mask</th>
<th>Next Hop Gateway</th>
</tr>
</thead>
<tbody>
<tr>
<td>192.168.1.10</td>
<td>255.255.255.255</td>
<td>10.1.3.10</td>
</tr>
<tr>
<td>192.168.1.10</td>
<td>255.255.255.255</td>
<td>10.1.3.11</td>
</tr>
</tbody>
</table>
Load Balancing

- http://publib.boulder.ibm.com/infocenter/iseries/v7r1m0/index.jsp?topic=/rzajw/rzajwviparr.htm

- Round Robin distribution
- Connection based, not load based
- Assumes all connections are about the same

Load Balancing

- Outbound
 - Set up Schowler routes
 Schowler Routes on the IBM iSeries
 http://www-01.ibm.com/support/docview.wss?uid=nas1eb95209430bbcb7486256d170047484a
 - Disable the automatic direct routes
 ADDTCPRT E RTEDEST('10.1.3.0') SUBNETMASK('255.255.255.0') NEXTHOP('10.1.3.10') BINDIFC('10.1.3.10') DUPRTEPTY(6)
 ADDTCPRT E RTEDEST('10.1.3.0') SUBNETMASK('255.255.255.0') NEXTHOP('10.1.3.11') BINDIFC('10.1.3.11') DUPRTEPTY(6)
 - DUPRTEPTY (duplicate route priority) of 6 is a “magic number.” Anything below 6 and Schowler routes are turned off.
Joining networks

• DON’T FALL INTO THE TWILIGHT ZONE!
 – Watch out for asymmetric routing
• Packets come in over one interface, but leave over another
• Fix with specific routes
• Use NETSTAT to plan
 – List Network Connections (QtocLstNetCnn) API
Joining networks

Default routing

- By default, a default route is bound only to the first eligible interface that comes up
- Others use first default route on system
- Each route should be created for each appropriate interface
Default routing

- To fix:

<table>
<thead>
<tr>
<th>Route Destination</th>
<th>Subnet Mask</th>
<th>Next Hop</th>
<th>Preferred Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFTROUTE</td>
<td>NONE</td>
<td>10.4.1.1</td>
<td>10.4.1.10</td>
</tr>
<tr>
<td>DFTROUTE</td>
<td>NONE</td>
<td>10.4.1.1</td>
<td>10.4.1.11</td>
</tr>
<tr>
<td>DFTROUTE</td>
<td>NONE</td>
<td>172.16.1.1</td>
<td>172.16.1.2</td>
</tr>
<tr>
<td>DFTROUTE</td>
<td>NONE</td>
<td>172.16.1.1</td>
<td>172.16.1.3</td>
</tr>
</tbody>
</table>
• System i News March 2010

The Virtual IP Address (VIPA) Zone on IBM i

Jeff Carey
jeff@jmcarey.com